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6. Three-dimensional  results  are  presented  for a clipped  delta  wing  with  leading-edge 
sweep of 50.5" with a circular-arc  airfoil  section  and for an  aspect  ratio 5 
rectangular  wing  with a NACA 64A006 airfoil  section. 

7. A conservative  shock  point  operator  was  derived  for  use at a mesh  point  where  the 
steady flow is  supersonic  while  the flow at the  next  point  downstream  is  subsonic. 
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The purpose of the work  described in  this  report was to develop a means for calculating 
air  forces  for use  in  flutter analyses of three-dimensional  lifting  surfaces  in  the 
transonic  flight  regime.  Flutter is not only a significant  problem at transonic  speeds, 
but it has  also proved difficult  to  predict  analytically.  These  difficulties  result  not  only 
from the  mathematical  complexities of the  equations  but  also from computer  resources 
required by the  repetitive  nature of flutter  analyses performed during vehicle  design. 

Various  methods  are  currently  under  study for predicting  unsteady  transonic air  forces, 
ranging  from  the  relatively  expensive  finite  difference  models  including  time 
integrations to economical  approximate  procedures  based  on  linear  theory.  The 
procedure of this  report is intended to be  intermediate  in  terms of computer  machine 
resource  usage  and  is  based on a finite  difference  method developed by Ehlers  in 
reference 1. The  assumption of small  perturbations  from a uniform  stream  near the 
speed of sound  retains  the  necessary  complexity  for  describing  flows  with  local 
supersonic  regions.  The  application of the  perturbation velocity potential  restricts  the 
solution to  weak  shocks  which,  for  thin  wings of reasonably good design, is not too 
limiting a n  assumption. When the flow is steady,  the  resulting  nonlinear  differential 
equation  reduces to the well-known transonic  small  perturbation  equation  studied by 
Murman,  Cole,  and  Krupp (refs. 2, 3, and  4).  The  unsteady  differential  equation  is 
simplified by considering the flaw to  consist of the  sum of two separate  potentials 
representing  the  steady  and  unsteady  effects.  The  assumption of small  amplitudes of 
harmonic  oscillation  leads  to  a  linear  differential  equation  for the  unsteady  potential 
with  variable coefficients depending  on the  steady flow. The  resulting  air  forces  are 
thus  superposable  and  may be directly  used  in  conventional  flutter  analysis 
formulations. 

The effect of thickness is included  in  the  steady flow analysis.  The  unsteady  analysis is 
carried  out for  a wing of vanishing  thickness  but  submerged i n  a  velocity potential 
distribution  resulting from the  steady  analysis. As formulated,  the shock is  assumed to 
be fixed by the  steady flow. It  is noted that shock  motion could be included  in a linear 
fashion by introducing  the  per turbat ions of the  unsteady  motion  into  the 
Rankine-Hugoniot  relations. 

Generally,  the  results of applying  this  procedure, as reported  in  references 5 through 9, 
have  been  encouraging. First, correlation of finite  difference  solutions for flat  plate 
configurations  with  corresponding  results  from  linear  theory  has  been good for  both 
two- and  three-dimensional  configurations. For mixed flow, where  the  solutions for a 
NACA 64A006  airfoil  were  compared  with  experimental  data  from  Tijdeman  and 
Schippers  (ref. lo) ,  the  pattern of the  pressure  distribution  closely followed that 
observed experimentally;  however,  the  analytical  pressure  levels  were  generally  higher 
than  the  measured  levels.  The  reason  for  the  discrepancy  between  theory  and 
experiment  is  not  known,  but  the  discrepancy may be  due to boundary  layer or 
separation effects,  or  both, or to unknown  problems  associated  with the theory  or  with 
the  pressure  measurements.  Thus,  the  correlation  studies for the two-dimensional  case 
have been  inconclusive  because of the  lack of knowledge of viscous  effects and, for the 
three-dimensional  case,  because of a  lack of experimental  pressure  data. 
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A significant  cause for concern  in  the  practical  application of this procedure has been 
stability  problems  with  the  relaxation  procedures used to  solve  the  sets of finite 
difference  equations.  These  stability  problems - which are a  function o f  reduced 
frequency. Mach number,  and  the  size of the  finite  difference  region - severely  limit  the 
use of this method i n  flow regimes of most  interest.  Solution  stability  is  thus  a major 
topic of this  report. 

Section 6.0 is  devoted to  a  discussion of the  accuracy of solutions from the  finite 
difference model in  comparison  with  subsonic  solutions  for the flat plate. In  addition, 
results  are presented for a  low-aspect-ratio  delta  wing  and  a  moderate-aspect-ratio 
rectangular  wing. 

A parallel  study  using  finite  difference  methods on the  unsteady  transonic flow problem 
has been conduct.ed by Traci.  Albano,  and Farr (refs. 7, 8. and 9). The  result.ing 
procedure  concentrates  in  a  consistent  manner on the low-frequency regime.  Their 
derived  equations do not  include  the cross product  term  consisting of the  derivative of 
the  unsteady velocity potential ‘p, with  respect to time  and of the second derivative of 
the  steady velocity potential p,, with  respect  to  the flow-wise coordinate.  In  most of 
their  applications,  the second derivative  with  respect to time  is  left  out. However. the 
formulation of the  finite  difference  equations,  the  handling of the  boundary  conditions, 
and  the  use of a column line  relaxation  solution  procedure  appear very similar  to  the 
procedure  used here. 
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.~torm stream  near the 

Streamwise  dimension of mesh  region,  also  value of x at left  hand  side of 
one-dimensional  interval 

Root  semichord of wing,  also  vertical  dimension of mesh  region,  also 
value of x at  right  hand  side of one-dimensional  interval. 

Maximum  error  quantity 

Instantaneous  wing  shape  defined by zo = Sf(x,y,t) 

Function  defining  wing  trailing  edge 

Undisturbed wing or  airfoil  shape 

Unsteady  contribution  to  wing or airfoil  shape 

Distance  between  mesh  points  in  one-dimensional  problem 

x,y,z subscripts for points  in  the mesh 

fi 

Transonic  parameter, (1-Ivf21/(M2c) 

Dimensions of element used in  residual discussion 

Freestream Mach number 

Overrelaxation  factor 

w / e  - idy-1)  poXx 

Wall  porosity parameter,  also  vector  length  used  in  Appendix B 

Freestream velocity 

Physical  coordinates,  made  dimensionless  with  the  root  semichord. 

Scaled  coordinates (XO, py~yo, pzo) for the three-dimensional  problem;  the 
scaled  coordinates for the two-dimensional  problem are x  and  y,  with  x 
again  being  the  direction of fluid flow. 

Variables of integration 

Coordinates of leading  and  trailing  edges 

2 
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Y I  

a 

4 

PO 

PI 

‘ P I  w 
w 

Coordinate of wing  tip 

Angle-of-attack 

42 
Ratio of specific heats  for  air 

Jump  in  pressure coefficient 

Jump in 6, a t  plane of wing or vortex  wake 

Jump  in P I  , at  wing  trailing  edge 

Thickness  ratio or measure of camber  and  angle of attack 

(S/M)2/3 

w ~ / ( l - ~ ’ )  

Scale  factor on yo and zO, p = 8”RhlvI”3 

Dummy  scaled  coordinates for two-dimensional  problem 

Air Density 

Unscaled  perturbation velocity potential 

Steady  scaled  perturbation velocity potential 

Unsteady  scaled  perturbation velocity potential 

Wake  integral  defined  in  equation (B-1)  

Angular reduced  frequency  fsemichord  times  frequency  in radians per 
second divided  by the  freestream  velocity,  wb/U) 
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4.0 FORMULATION AND SOLUTION 

A detailed  mathematical  derivation of the  method  for  the  solution of the  unsteady 
velocity potential  for  the flow about a harmonically  oscillating  wing is presented  in 
reference 1. The  discussion  here  will be limited  to a brief  outline of the  procedure  for 
the  two-dimensional flow. 

The  complete  nonlinear  differential  equation  was  simplified by assuming  the flow to be 
a small  perturbation  from a uniform  stream  near  the  speed of sound. The resulting 
equation  for  unsteady flow is 

where K = (1 - M2)/M2€,  M is  the  freestream Mach  number of velocity Uo in  the 
x-direction, x and  y  are  made  dimensionless  to  the  semichord  b of the  airfoil  and  the 
time t to the  ratio b/TJo. With  the  airfoil  shape as a function of time  defined by the 
relation 

Yo = 6f(x,t) 

the  linearized  boundary  condition becomes 

The  quantity 6 is  associated  with  properties of the  airfoil  (such as maximum  thickness 
ratio,  camber,  or  maximum  angle of attack)  and  is  assumed  small.  The  coordinate  y  is 
scaled to the  dimensionless  physical  coordinate yo according  to 

= 113 M 2 ~ 3 y 0  

and E is  given  in  terms of 6 by 
E = ( 6 / M > * l 3  

The  pressure  coefficient  is  found  from  the  relation 

The  preceding  differential  equation  is  simplified by assuming  harmonic  motion  and by 
assuming  the  velocity  potential  to be separable  into a steady-state  potential  and a 
potential  representing  the  unsteady  effects. We write for a perturbation  velocity 
potential 

cp= 560 (x,y) + ‘01 (x,y)ei(JJt (3) 

and  for  the body shape 

yo = Gf(x,t) = 6 [ fo(x) + f 1 (x)eiwt] 
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Since the  steady-state  terms  must  satisfy  the  boundary  conditions  and  the  differential 
equation  in  the  absence of oscillations, we obtain 

with 

x 
= fo (x), y = o ,  -1 < x <  1 ( 5 )  

On the  assumption  that  the  oscillations  are  small  and  products of 'p1 may be neglected, 
equations (1) and (2) with  the  aid of equations (4) and ( 5 )  yield 

where 

q = w  2 / ~ - i u ( ~ -  I)po 
xx 

subject to  the  wing  boundary  conditions 

1 < x <  1 

A computer  program  for  solving  the  steady-state  transonic flow about  lifting  airfoils 
based  on equations (4) and ( 5 )  was developed by Krupp  and  Murman  (refs. 3 and 4). The 
output of this  program  or a similar  program  can be  used  in  computing  the  coefficients 
for the  differential  equation of the  unsteady  potential.  The  similarity of the  unsteady 
differential  equation  to  the  steady-state  equation  suggests  that  the  method of column 
relaxation  used by Krupp  for  the  nonlinear  steady-state  problem  should  be  an  effective 
way t o  solve  equation (6) for  the  unsteady  potential cp1. Note  that  equation (6) is  of 
mixed  type;  being  elliptic or hyperbolic  whenever  equation (4) is  elliptic or hyperbolic. 
Central  differencing  was  used a t  all  points for  the  y  derivative  and  all  subsonic or 
elliptic  points  for  the  x  derivatives.  Backward  (or  upstream)  differences  were  used for 
the  x  derivatives at all  hyperbolic  points. 

The  boundary  condition that  the  pressure be continuous  across  the  wake  from  the 
trailing  edge  was found in  terms of the  jump  in  potential Acp1 to be 

where A'plte is  the  jump  in  the  potential  at x = xte just  downstream of the  trailing edge 
and  is  determined to  satisfy  the  Kutta condition that  the  jump  in  pressure  vanish at the 
trailing  edge.  The  quantity Apl is also  used in  the difference  formulation for the 
derivative q l Y y  to satisfy continuity of normal flow across the  trailing-edge  wake. 
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For  the  set of difference  equations  to  be  determinate,  the  value of cp1 or  its  derivative 
must  be  prescribed  on  the  mesh  boundary.  Following  Klunker  (ref. ll), we  found a n  
asymptotic  integral  representation  for  the  far-field cp1 potential,  and  for  the  related 
pressure  potential iocpl. Because of the  difficulty  with  convergence of the  integral 
over  the  wake  for  the  integral   equation of the  velocity  potential ,   upstream  and 
downstream  boundary  conditions  for  the  mesh  were  given  in  terms of the  pressure 
potential cp + impl,  for  which  the  wake  integral  can  be  integrated  in closed form.  The 
value of cp1 was  computed at one  point on the  upper  boundary  and at one  point  on  the 
lower  boundary;  the  points  were  conveniently  chosen  to  facilitate  rapid  convergence of 
the  wake  integral.  The  values of cp1 at other  points on the  upper  and  lower  boundaries 
were  found  by  numerically  integrating  the  quantity cp + iocpl with  respect  to x. 

1 X  

1, 

The  numerical  solution  to  the  resulting  large  order  set of difference  equations  may  be 
obtained'by  using a relaxation  procedure.  The  initial  solutions  were  obtained by using a 
line  relaxation  procedure.  Convergence is determined by monitoring ERROR, the 
maximum  change  in  the  velocity  potential  between  iteration  steps. ERROR is defined 
as  the  maximum  value  over all i and j of 

p, .!I) - P, ij (11- 1 ) 
1J 1 

L r 1 
where cpl..(") is   the  unsteady  velocity  potential   for  the  nth  i teration, p l i j  (n -1 )  
corresponding  potential  for  the  preceding  iteration,  and r is  the  relaxation  factor.  The 
solution was considered  converged  when ERROR s In  some  cases,  particularly  for 
finer  meshes  and  for  the  pitch  mode,  convergence  was  considered  complete  when 

'? 

ERROR s 
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5.0 RELAXATION SOLUTION STABILITY 

As discussed in a preceding NASA report by the  authors  (ref. 5), significant  stability 
problems  were  encountered  with  the  relaxation  procedures  used  to  solve  the  finite 
difference  equations.  Generally,  these  procedures  paralleled  those  successfully  used  for 
the  steady-state  problem.  In  essence,  this  meant  sweeping  through  the  mesh  with a line 
relaxation  procedure.  When  the  line of points  was  parallel  to  the  freestream,  it  was 
called  row  relaxation;  when  the  line  was  perpendicular  to  the flow, i t  was  called  column 
relaxation. 

The  characteristics of the  solution  instability  are as follows: 

1. It occurs  with  the flow is  purely  subsonic as well as mixed  with  locally  supersonic 
regions.  Thus,  the  i.nstability  is  not  dependent on the  presence or absence of 
transonic  shock flow. 

2. It appears  to be a function of A1 = oM/(1 - M2) and  the size of the  finite  difference 
area for the two-dimensional  problem or volume for the  three-dimensional  problem. 
An analysis of the  flat  plate  with a uniform  mesh  yields for the  critical  value of AI, 
the  value of A1 above  which the  relaxation  solution  is  unstable, 

where  a  is  the  streamwise  dimension of the mesh  region,  b  is  the  height,  and K is 
the  transonic  parameter. 

3. For a given  condition (say a fixed  Mach  number  and  finite  difference  point  setup), 
as A I  was  increased  the  rate of convergence  decreased until  the  solution  started to  
diverge. Thus, the  actual  value of A1 for which the  solution  first  diverges  is 
ill-defined,  although it  is  generally  in  the neighborhood of the  value  given by 
equation (10). 

Some insight  into  the  causes of the  instability  may be obtained by considering  the 
Helmholtz  equation  into  which  the  difference  equation for the  oscillating flow over a 
flat plate  may be transformed,  namely, 

It  is well known that  solutions  to  the  Helmholtz  equation  may  not  be  unique for given 
types of boundary  conditions  on a closed  region  since  eigenfunctions  with  real 
eigenvalues  can  occur;  i.e.,  functions  representing  standing  waves  for  which 
homogeneous  boundary  conditions occur on the  boundary. For the  rectangular  mesh 
area of width  b  and  length a, the first eigenvalue  associated  with  solutions of the 
Helmholtz  equation  with  Dirichlet  boundary  conditions  is  the  critical  value of A1 just 
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presented.  In  terms of the  relaxation  procedure, it was  shown  in  reference 5 that  
solution of a relaxation  problem of the form 

converges  only  when [A] is positive  definite,  and  this  holds for the  unsteady  problem 
when A 1  is less  than Xlcritical. 

Integral  equation  solutions  currently  in  use  for  the  linearized  subsonic  unsteady. 
solutions  employ  only  the  outgoing  wave  solution for the  kernel  function.  Similarly  the 
outgoing  wave  solution is  used  to  define  Klunker-type (ref. 11) boundary  conditions  on 
the  outer  boundary of the  mesh  region.  Apparently  the  incoming  wave  solution  is  picked 
up  during  the  numerical  solution. 

Investigations  to  remove  or  moderate  the  relaxation  solution  stability  problem  may  take 
any of several  paths.  The  approaches  discussed  here  include (1) modifying the  boundary 
conditions with  the hope that  the  numerical  solution would pick up  only  the  outgoing 
wave solution, (2) using a coordinate  transformation so that  boundary  conditions  in  the 
physical  plane at  infinity could be  applied  to the  outer  boundaries of a finite  mesh 
region, (3) replacing  the  iterative  relaxation  solution  with a full  direct  solution  and 
thus  solving for all  the  unknown velocity potentials at one time,  and (4) using  an 
overlapping  subregion  concept. 

Approaches that  have  also  been  considered t o  some  degree  and  have  not  proved 
successful include  the following: 

Artificial  manipulation of elements  in  [A]  in  order to provide a better  conditioned 
matrix.  In  particular,  an  attempt was made  to  shift  the  eigenvalues of [A] by 
addition of a  large  diagonal  matrix  to [A]. (Such an addition  must, of course,  be 
compensated  for by appropriate  modification of the  right-hand  side of the  system.) 
This  modification  did  not  improve  the  stability  or  convergence  properties of the 
solution  method.  Subsequent  theoretical  investigations  revealed  that  such a 
modification is  essentially  equivalent t o  doing  underrelaxation on the  original 
system. 

A  sequential  mesh  refinement  system  based  on  the  procedures  discussed by Brandt 
in  reference 12. 

A  mathematical  technique for making  [A]  positive  definite  for  values of X 1  above 
Xlcritical by premultiplication by the  conjugate  transpose of [A].  This  procedure 
and  some  results  are  presented by Hafez,  Rizk,  and  Murman  in  reference 13. Our 
experience  has  been  essentially  the  same as they  describe;  (i.e.,  that  the 
convergence rate  in  the  relaxation  solution of the [A * A] system  is  very  slow  and 
that a small  value  for  the  maximum  difference  between  iterations  does  not  imply 
that  the last iteration  is  correspondingly close to  the  true  solution. 
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5.1 VARIATIONS IN OUTER BOUNDARY CONDITIONS 

The  Klunker-type  boundary  conditions  defined ‘p1 on the  upper  and lower  boundaries 
and  set  plX + iw‘p1 on the  upstream  and  downstream  boundaries of the  finite  difference 
region.  Since  these  boundary  conditions  apparently  did  not  effectively  sort  out  the 
incoming  waves  from the  outgoing  waves,  alternative  conditions  were  explored.  These 
included  using an  outgoing  radiation-type  condition  on all four  boundaries  and  also a 
porous wall  boundary  condition on the  upper  and lower  boundaries.  The  mathematical 
forms  for  these  boundary  conditions  are  summarized  in  table 1. The  porous  wall 
conditions could be  varied  to  form  either a “free  jet” by making  the porosity  parameter, 
R, very  large or a “solid  wall”  condition by making R small.  In  practice,  the  parameter 
is  usually fixed by some empirical  method  for  specific  wind  tunnel  conditions  but, for 
the  current  work,  the  interest  is on  how the  stability of the  relaxation  solution  may be 
dependent on its  value. 

Table 1.-Equations for Boundary Conditions 

Boundary  conditions Boundary 

Upstream 

Downstream 

Upper 

Lower 

Equation 

$1 x - K G 1  
. M  

M GlX + iw  - 
l + M G 1  

= O  

= o  

= O  

= O  

Y = O  

The  pilot  program was modified so that  all  six  combinations of outer  boundary 
conditions  shown  in  table 2 could be run;  that  is,  either of the two conditions on the 
upstream  and  downstream  boundaries could be run  with  any  one of the  three  boundary 
conditions  specified for the  upper  and  lower  boundaries.  The  free-jet  and  solid  wall 
boundary  conditions  also  were  programmed  explicitly  and  thus could be applied  without 
the need for fixing a value  for R. The  test  example  consisted of a two-dimensional  airfoil 
of vanishing  thickness  oscillating  in  harmonic  pitch  at a Mach number of 0.9. For this 
case  and  for  the  mesh  dimensions  that  are  used,  the  reduced  frequency  above  which 
relaxation  solutions  are  expected  to be unstable  according  to  equation (10) is about 0.1. 
The  examples  were  run for a very  coarse  mesh (17 x lo), and  the  overrelaxation  factor 
(ORF) was  varied  to  make  sure  the  solution  instabilities  were  not  due  to too large  an 
ORF. 
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Table 2. -Types of Boundary  Conditions 

In  summary, 

~~ ~~ 

Upstream and 
downstream 
boundaries 

-~ ~ 
~~ -. 

1. Klunker 

2. Outgoing wave 

Upper and lower 
boundaries 

1. Klunker 

2. Porous wall 

Free jet (large R )  
Intermediate 
Solid  wall  (small R) 

3. Outgoing wave 

the  results of the  calculations showed that  the  alternate  boundary 
conditions  used  did  not  significantly  improve  the  convergence of the  solution.  In  some 
cases, a slight  increase  in  the  value of reduced  frequency  was  observed for which 
convergent  solutions could be  obtained. No combination of boundary  conditions would 
provide  solution  convergence  above a reduced  frequency of 0.18. Since  the  exact  values 
of w a t  which a relaxation  solution  stops  converging  and  starts  diverging  cannot be 
exactly  determined  anyway,  the  results of this  investigation  were  not  considered 
promising. 

5.2 COORDINATE  TRANSFORMATION 

A second  concept  explored in  hopes of removing  the  relaxation  solution  stability 
problem was  a  coordinate  transformation  that  permits  the  boundary  conditions at 
infinity  to  be  used  on  the  boundaries of the  finite difference  region; that  is,  the  physical 
region  to  infinity  is mapped into  the  limited  area of the  finite  difference  mesh  in  the 
calculation  plane.  The  particular  form of transformation  that  was  used  is  that  suggested 
by Carlson  (ref. 14) which, as he  points  out,  allows for a physically  realistic  behavior of 
the  solution  at  infinity.  The  physical  plane  is  divided  into  three  regions by 
perpendicular  lines  through  the  leading  and  trailing  edges of the  airfoil.  (See  fig.1.)  The 
physical  plane  coordinates  (x,y)  are  related  to  the  calculation  plane  coordinates (4,q) by 
the following  relations: 

In region I where 4 s - l  

In region 11, where -1<&1 
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x = - 1  x = + I  

Figure 1.-Subdivision o f  Flow Field for Coordinate Transformation 



In  region 111, where 1st 

and 

Two different  boundary  conditions  were  used.  The  first  consisted  simply of making 50 = 0 
on all four  boundaries;  the  second, of using  the  outgoing  wave  conditions  discussed  in 
the  preceding  section.  Here,  the  outgoing  wave  condition  was  applied at the  midpoint 
between  the  boundary  and  the  point  adjacent  to  the  boundary. 

These  changes  did  not  solve  the  relaxation  solution  stability  problem.  For a given  Mach 
number, for example,  relatively  little (if any)  change  was  noted  in  values of reduced 
frequency at which the  solution  became  unstable. 

It  is of interest  to  note  that  the  combination of the  coordinate  transformation  and  the 
outgoing  wave  boundary  condition  provided results for the  flat  plate which  very closely 
matched  corresponding  data  from  the NASA subsonic air force program  (refs. 15 and 
16). A  comparison of results  from  using  outgoing wave  conditions  together  with  the 
coordinate  transformation  is  shown  in  figure 2. I t  should  be  noted that  the  former 
results  are  for a 42 x 30 mesh  while  the  latter  results  are for a significantly  coarser 28 
x 20 mesh. 

5.3 COMPLETE DIRECT SOLUTION 

A  "semidirect"  solution  procedure was examined by the  authors  in  reference 5. The  form 
of the  equation solved at that  time  was 

where ((pl(")} contained an  element for  each  interior  mesh  point.  In  other  words,  there 
was still  an  iteration  required  to  update  the  vector {R((pl'"-")} on the  right-hand  side. 
Although  very  efficient for the  small  meshes  for which it was used (i.e., permitted by 
the  in-core  solution  capability), it  was  subject  to  the  same  type of solution  instability as 
the  relaxation  solutions.  However, it is possible  to  rewrite  the  equation so that  all 
unknowns  are on the  left-hand  side  and  the  solution  may  be  calculated  without 
iteration.Consider,  for  example,  the  two-dimensional  problem for purely  subsonic flow. 
The  mesh  is  set  up  to  have IMAX points  in  x-direction  and KMAX in  the cross-flow 
direction.  The  points  are  sequenced by column,  upstream to downstream.  The  unknowns 
consist of the 501,s interior  to  the  outer  boundaries.  Thus,  the  indice  N of the  point 1,K is 

N = (KMAX-2) * (1-2) + K 

for 2 s  I s IMAX-1 and  2 s K s KMAX-1 
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Figure 2.-Jump in Pressure Coefficient Across a Flat Plate 
Oscillating in  Pitch, M = 0.9, w = 0.06 

The  general  form of the  equation following eq. (24) of reference 1 (with  all  terms moved 
to the  left-hand  side) for points  adjacent to  the  boundaries  is of the form 

With the  sequencing as indicated  above,  the  five  terms  in  the  coefficient  matrix  are  in 
the following  column  locations: 

nD = KMAX" (1-3) + K 
nA = KMAX* (1-2) + K - 1 
ng = KMAX* (1-2) + K 
nc  = KMAX* (1-2) + K + 1 
nE = KMAX" (1-1) + K 
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The  bandwidth of the  matrix is equal  to nE - nD + 1 or 2* (JMAX-2) + 1. The 
boundaries  present  special  problems.  For  example,  the p17s adjacent  to  the  wake,  in 
addition  to  the  usual  dependency,  are  also  functions of eight  values of cpl at mesh  points 
in  the  vicinity of the wing trailing  edge  (see  eq. (411,  (421, (85),  and (86) of ref. 1). This 
significantly  increases  the  bandwidth of the coefficient  matrix.  The cpl’s for  points on 
the  outer  boundaries  are,  using  Klunker-type  boundary  conditions,  functions of the 501’s 
at all other  interior  points  in  the  mesh if the  volume  integrals  are  retained  (see eq (110) 
and (114) of ref. 1). If the  volume  integrals  are  not  retained  (and  this  is  the  usual 
procedure),  the  boundary cp17s remain  functions of the Acp17s across  the  wing  and  wake. 
Use of the  outgoing  wave  boundary  condition  limits  the  dependency of the cpl for  any 
point on the  outer  boundary  to  the  immediate  vicinity of that  point.  The  bandwidth of 
the coefficient matrix is thus  determined by the  number of points  in  the  wake.  This 
complete  or  full  direct  procedure  should  provide  answers  over  the  full  range of values 
except for the specific values of A 1  for  which the  matrix [A(Al)] is singular. 

This  procedure  was first tested  with a one-dimensional  problem.  There  was no difficulty 
in  obtaining  solutions  near  the  singular  points.  Accuracy,  however, as measured  against 
the  analytic  answers, did present  difficulties,  which  are  discussed  in  detail  in  section 5. 

The  full  direct  solution  was  also  investigated for the  two-dimensional  problems.  One 
formulation  included  the  coordinate  transformation  and  the  outgoing  wave  boundary 
conditions  discussed  previously.  Use of the  latter  significantly  reduced  the  bandwidth of 
the [A] matrix  over  what  it would have  been  had  Klunker-type  outer  boundary 
conditions  been  used,  thus  increasing  the  number of mesh  points  that could be handled 
by the  in-core  solution  routines. 

The  resulting  program  was  used  on  the  sample  problem of the  airfoil of vanishing 
thickness  oscillating  in  pitch. As with  the  one-dimensional  program, no trouble  was 
encountered  in  obtaining  solutions at frequencies  well above values  that  had proved 
critical  for  the  relaxation  solution.  However, once the neighborhood of the  critical  value 
had  been  reached or exceeded,  very poor correlation  with  corresponding  solutions  from 
the NASA subsonic  unsteady flow program was obtained;  that  is,  as  the  value A, was 
increased  from  subcritical  values  to  supercritical  values,  correlation  with  the NASA 
program  went  from  very good to  very poor. The  characteristics of this  lack of correlation 
are discussed in  detail  in  section 6. 

The  original  direct  solution  package  did  not  contain a pivoting  capability.  Since  concern 
was  expressed  about  numerical  accuracy of the  solution  in  the  neighborhood of the 
matrix  singularities, a solution  routine  including  partial  pivoting  with  equilibration 
was  inserted  in  the  program.  Although it could be  determined  that  pivoting  was  used 
during  the  solution,  the  results  remained  exactly  the  same  to  the  number of significant 
digits  retained. 

In  summary,  the  full  direct  solution provides  solutions at values of A 1  above the  critical 
. value.  The  solutions do not  correlate  well  with  corresponding  solutions  from  the NASA 

subsonic  unsteady flow program  and  are  thus  not considered  reliable.  Although  these 
solutions  have  been  obtained  using  routines  that  include  partial  pivoting,  the  lack of 
correlation  does  not  appear  to  be  due  to  numerical  problems  inverting  the  matrices.  The 
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problem may  be  due  to  the  restriction  to a relatively  coarse  grid  because of a .limitation 
of the in-core  solution  routine  andlor  to  the  type of boundary  conditions.  This  seems  to 
be borne  out by the  results  from  the  study of the  one-dimensional  problem for which an 
error  analysis  is  easy  to  obtain.  This  is discussed in  detail  in  section 6. 

5.4 OVERLAPPING REGIONS 

As noted in  the  general  description of the  relaxation  solution  stability  problem at the 
beginning of this  section,  the  critical  value of X1 is  inversely  proportional  to  the  size of 
the  finite  difference  region  over  which  the  solution  is  being  calculated.  This  fact 
suggested the  possibility of solving a sequence of small  overlapping  regions.  The  critical 
value of A 1  for  each  subregion would  be large,  and  perhaps  continuity  between 
subregions could be  achieved by iteration.  In a sense,  the  basic  line  relaxation 
procedure  (whether  accomplished by rows or columns)  is  the  extreme  limit of this 
concept with  each  column or row acting as a separate  subregion.  Experience  has  already 
shown us  that  this does  not  work. 

However,  some  examples  have  been  run  using  column  relaxation  with  the  finite 
difference  solution  region  divided  into  two and  three  subregions  vertically  and  with 
several  variations  in  the  amount of overlapping of the  subregions. All results  have  been 
discouraging  and  there  appears to  be little  point  in  extending  this  investigation  further. 
A typical  example  using  three  subregions  will be  discussed  next. 

This  example  is for a flat plate  (no mixed flow) and a relatively  coarse  mesh (17 x lo), 
but  it  should  provide a good indication of how the concept of overlapping  regions  will 
work.  The  solution  region  was  divided  into  three  subregions  in  the  streamwise 
direction.  The  location of the  mesh  points  in  the  x-direction  and  the  corresponding 
indices are shown in  figure  3a.  Figure 3b presents a sequence of convergence  histories 
with  the  range of x-indices  over  which  the  column  relaxation  solutions  were  performed 
indicated below each  pass.  First,  the  solution for the complete  region  was  calculated to 
check solution  stability. As shown in  figure  3b,  with  an ORF of 1.0, the  solution at first 
converges slowly but  after  some 90 iterations  has  started to diverge.  Using an ORF of 
1.7, the  solution  is  quite  unstable  and  shows a general  divergence  trend.  Included  in  the 
same  figure  are  the convergence  histories  for  the  subregions.  The  calculation  is  started 
off  by converging  the  middle  section, which converges  very  rapidly. an ORF of 1.7 was 
used  for this  and  all succeeding  calculations.  Then, as shown,  the  other  sections  were 
converged in succession.  The cp1 distribution  was  saved  after  each  subregion  solution 
and  used as a starting  point for the  next  solution.  The  overall  convergence of the 
system, as noted  from the  starting  error for each  subregion  solution,  is  marginal at best 
and would require  many  more  solution  sequences  to  determine  whether  the  overall 
trend  is  convergent or divergent. 

Finally,  the  pressure  plots for three  different  stops  along  the  solution  path  are  shown  in 
figure 3c. These  distributions do not  appear  to be converging  either.  This  example  is  not 
considered  to  be  completely  conclusive as to  the  worth of the  overlapping  subregions 
concept. It  is  typical of what we have  experienced  with  other  similar  examples. We have 
found no evidence that  this concept would provide a practical  means  to  avoid  problems 
arising  from  relaxation  solution  instabilities. 
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6.0 NUMERICAL ACCURACY FOR LARGER VALUES OF 

The  accuracy of the  finite difference  procedure of this  report  may be  discussed in  several 
different  contexts.  Previous  reports (by the  authors  in refs. 1, 5, and 6 and  Traci  et al., 
in refs. 7, 8, and 9) have  included  numerical  examples,  the  results of which are 
compared either  with  the  experimental  data of Tijdeman  and  Schippers  (ref. 10) or  with 
other  analytical  data.  These  analytical  data  may  be  for  strictly  subsonic flow (flow at 
high Mach number  over a flat  plate)  or  for  more  detailed  transonic  calcdlations 

. including  full  shock  effects  such as those by Magnus  and  Yoshihara  (ref. 17). The 
discussion  here  concentrates  on  the  relationship  between  the  critical  value of A1 (critical 
in  terms of relaxation  solution  stability)  and  the  accuracy of the  finite  difference 
solutions  relative  to  more  exact  linear  solutions.  The  examples  to  be  discussed do not 
include  shock effects. 

6.1 THE ONE-DIMENSIONAL PROBLEM 

In  order  to  gain  insight  into  the  unsteady  transonic  problem  as  formulated  in  this 
report, a one-dimensional  version of the  flat  plate problem  was  investigated.  The 
one-dimensional  analog of the  two-dimensional  equation (6) for a flat  plate  may  be 
obtained by dropping  the (olyy term.  Dividing  the  resulting  equation by K, we have 

where A1 = oM/(1 - M 1. 2 

The  exact  general  solution t o  equation (13) is 

where C1 and C2 may be determined once the  boundary  conditions  (end  conditions) are 
specified.  The  derivation of equations (13) and (14) along  with a detailed  discussion of 
the  exact  general  solution  is  presented  in  appendix A. An  approximate  solution  over  an 
interval  [a,b]  may  also  be  found by transforming  equation (13) to a finite  difference 
equation  with  the  solution  being  obtained by either a full  direct  solution  (similar  to  that 
discussed in sec. 5.3) or by a point  relaxation  procedure. 

The  interest  here  is  in  comparing  answers  obtained  from  the  finite  difference  solution 
with  corresponding  answers  from  the  exact  solution.  For  this,  the  maximum  error 
quantity E for a given  reduced frequencyo~,  is defined as 

(15) 

E ( W K )  = 1 = 1, IMAX 
Max I I - Pl 

'exact  'finite  difference 
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The  investigation  is  aimed at determining  the effect of the  kind of boundary  conditions 
used  on E(oJK). First,  it  is clear  from  the  exact  solution  that  the  solution  for a given 
reduced  frequency o or A1 is made  up of components  with two substantially  different 
wavelengths.  For a given  finite  difference  mesh (a given  number of mesh  points  and 
specified mesh  spacing), i t  would  be  expected that  the  short  wavelength component 
would  be less  accurately  represented  than  the  long  wavelength  component;  that  is, a 
solution  made  up  predominately of the  short  wavelength  component would  be less 
accurately  determined  using a finite  difference  calculation  than a solution  made  up 
predominately of the  long  wavelength  component.  This  has  indeed  proved  to be the  case 
as shown  by  examples  presented  in  figure 4. Here  two  combinations of Dirichlet  and 
Cauchy  boundary  conditions  were  used  to  obtain  solutions.  The first was  set  up so that 
the  solution would consist  solely of the  short  wavelength  component  and is denoted by 
the A-symbols in  figure 4; and  the second, set  up so that  the  solution would consist 
solely of the long  wavelength  component,  is  denoted by the 0 symbols.  The  error  level 
for the  long  wavelength  component  is  significantly  lower  than that for the  short 
wavelength  component. 
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Second, it is of interest  to  know how the  error  varies  with  frequency. An analysis of a 
similar  equation  was  made by Fischer  and  Usmani  in  reference 18. "he equation 
studied  was of the  form 

and  is  simply  related  to  our  one-dimensional (PI equation by the  transformation 

Application of their  analysis,  based  on  equally  spaced  mesh  points,  to  equation (16) 
shows that for small  values of  hA1, where  h is the  distance  between  adjacent  mesh 
points  and  Dirichlet  end  conditions 

E h2 X 1 3  
E ( w K ) < E 1  -sin [ X l  ( b - a ) ]  (18) 

for  some constant  E  independent of the reduced  frequency  and  mesh  spacing.  In  view of 
the close relation  between  the (PI and + equations, we would expect the  error  behavior 
in  the  finite difference  solution  to  be  similar  in  both  cases.  Equation (18) displays 
several  interesting  characteristics.  For  example,  the  predicted  error  is  directly 
proportional  to  the  square of the  mesh  point  spacing  h  and  the  third power of A 1  or, for 
fixed Mach number,  the  third power of the reduced  frequency w .  Also, the  presence of 
the  sin  [Al(b - a)] in  the  denominator of the  equation  introduces  singularities  in  the 
error  curve at values of o (or A I )  for which  Al(b - a) = nm, n = 1,2, ... These  values of AI 
correspond  to  eigenvalues of the  analytical  solution  (eq.  (14)):  i.e.,  are  values of A 1  for 
which there  is no unique  analytical  solution.  Except  near  these  singularities,  the  error 
curve as a function of A 1  behaves  like A 1 3  times a slowly varying  modulation  factor. 
Thus  over  much of the  range of A 1  the  error  is  essentially  proportional  to A13. Very near 
A 1  = 0, the  error  is of course  essentially  proportional to A 1  since  x/sin  x-1 as x--0. 
This  region is of little  interest  to  the  eigenvalue  analysis,  however.  In view of the close 
relation  between (PI and t,b equations,  it  is  expected  that  the  error  behavior would also 
be the  same for (PI. 

2 

The  presence of the  singularities  in  the  curve of ERROR versus  reduced-frequency  is 
shown in  figure 5 by the A-symbols. I t  would appear  that  the  eigenvalues  for  the 
analytic  system do not  coincide  exactly  with  the  eigenvalues  for  the  finite  difference 
system, as noted by the  distortions  in  the  curves  with  which  the  points  have  been 
connected.  The  calculation  was  set  up so that E ( ~ K )  would  be evaluated at five  points 
between  each  analytic  eigenvalue.  The  singular  behavior  is  the  result of the  evaluation 
of C1 and C2 from a set of simultaneous  equations  that  are a function of the  applied 
boundary  conditions.  This  set of equations  may  be  written  in  the  form 
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where a is a 2 x 2 matrix  that  is a function of A 1  (or w), C is the  two-element  column 
matrix  made  up of C1 and C2. The  forms of cy and y are a function of the  nature of the 
boundary  (end)  conditions; i.e., whether  they  are  Dirichlet,  Neumann,  or  Cauchy. 
Moreover,  for certain  values of XI, the  determinant of a will  be  equal  to  zero.  These 
certain  values  are  eigenvalues.  For  values of X 1  that  correspond  to  eigenvalues,  the 
solution  for C1 and C2 is  not  unique;  that  is, for A 1  equal  to  eigenvalues,  there  is  no 
unique  solution  to  equation (13). 

It  is  interesting  to  note  that  the  values of  X1,which are  eigenvalues of cy, may  be  either 
all-real or  complex depending  on  the  nature of the  boundary  conditions. It is  readily 
shown that  Dirichlet  conditions on  both  ends or Neumann  conditions  on  both  ends  lead 
to all-real  eigenvalues.  However,  for  certain  combinations,  such as mixed  conditions 
(Dirichlet on  one end  and  Cauchy on the  other),  the  eigenvalues  may be made complex. 
Under  these  circumstances, we would not  expect the  violent  peak  and  valley  behavior of 
the  error  plots  that  result  from  the  all-real  eigenvalues.  This is indeed  confirmed  with 
the  results shown in  figure 5 when the  boundary  conditions  are  such as to  yield complex 
eigenvalues. 
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This  problem  was  originally  studied  to  see if i t  would shed  light on the  relaxation 
solution  instability  problem.  In  particular, it was of interest  to  see if relaxation 
solutions could be obtained  for  boundary  (end)  conditions for which the  eigenvalues  are 
complex.  However, tests  with a relaxation  solution of the  one-dimensional  system  have 
not  converged and  thus  having complex eigenvalues  does  not  seem  to  materially  affect 
the convergence. 

In  addition it was  noted  that  equation (18) implied  that  the  error  was  essentially 
proportional  to X 1  or 03. An example of this is shown in  figure 6 where  an  error  curve 
for an  example  in  which  the  singularity  behavior  has  been  suppressed is compared  with 
a curve  proportional  to 03. The  correlation  between  the two is very good. Also included 
is a curve  that  is  proportional  to 04, as predicted by a conventional  truncation  analysis 
of the  finite difference  equation. 
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In  summary,  analysis  and  experiment of the  one-dimensional  equation  show  that  the 
error  from  the  finite  difference  solution  is  essentially  proportional  to h2A13, and  thus 
the  number of points  has  to  be  expanded (or more  specifically the  mesh  spacing  reduced) 
in  proportion  to  the 3/2 power of the frequency in  order  to  retain  accuracy.  The  level of 
the  error is determined by the  boundary  conditions  and,  in  turn,  determines  the  relative 
contributions  to  the  solution by the  long  and  short  wavelength  components.  The 
relatively  larger  part  the  long  wavelength  component  plays,  the  smaller  the  level of 
error.  Superposed  on  this  general  error  curve  can  be a series of peaks  and  valleys  with 
the  peaks  centered  around  the  values of A 1  (or w )  that  correspond  to  the  real 
eigenvalues of the  system of finite  difference  equations  and are  dependent on the 
boundary  conditions. If the  eigenvalues  are complex, the  peak-valley  behavior of error 
curve is suppressed. 

These  results would indicate  that, for certain choices of boundary  conditions  and 
sufficiently  fine  mesh  spacing,  adequately  accurate  results  may  be  obtained  in  the 
two-dimensional  case  using a full direct  solution  method. 

6.2 TWO-DIMENSIONAL  EXAMPLES 

As noted  in  section 5.3, a complete  direct  solution  using  outgoing  wave  boundary 
conditions  permits  obtaining  solutions at large  values of reduced  frequency,  and 
solution  stability  no  longer  is a problem.  However,  for the  mesh  sizes  used,  the 
correlation  between  the  finite  difference  solutions  and  linear  theory becomes  very poor. 
Results  are  presented  here for a two-dimensional  airfoil of vanishing  thickness 
oscillating  in  pitch  in a freestream of M = 0.9. Under  these  conditions,  relaxation 
solutions would  be expected  to be unstable  at  reduced  frequencies  (based  on  the 
semichord)  above  approximately 0.12 according  to  equation (10). Results  were  obtained 
using  both  the  linear  theory  program  and  the  finite  difference  program.  Very good 
correlation  between  the  two  theories  was  obtained at w = 0.06 (see fig. 21, and  very poor 
correlation at o = 0.3 as shown  in  figure 7. The  correlation  was  significantly  degraded 
even at w = 0.09 as shown in  figure 8. To test  whether  this  phenomenon was a function 
of X 1  rather  than w ,  the  same problem  was  rerun at a Mach number of 0.4 with  reduced 
frequencies so that  the  values of X 1  were the  same.  Correlation  between  results  from 
linear  and  finite  difference  calculations,  as  shown  in  figures 9 and 10, was good for 
w = 0.6 (corresponding to w = 0.06 a t  M = 0.9) and poor a t  w = 0.9 (corresponding to 
w = 0.091. The  results at w = 3, which are  not  shown,  were  very  bad.  Thus,  the  results 
from the  full  two-dimensional  transonic  problem  (although  with  nonmixed flow) appear 
to  follow the  same  pattern as the  results from the very  simplified  one-dimensional 
example.  Indeed,  the poor results  appear to be  due to the  same  cause as the  peaks  in  the 
error  curve shown in  figure 5 ,  but  this  requires  further  study.  In  particular,  since  the 
true  eigenvalues of this problem are  not  known,  it  is  difficult t o  assess  whether  the 
higher  frequencies  tried  are  near  eigenvalues  without  further  investigation of the 
sensitivity of accuracy as  a function of frequency. 

These  results  were  checked  using a direct  solution  routine  incorporating  partial 
pivoting  with  equilibration.  The  results  were  not  changed,  although  it  was  possible  to 
tell  that  the  pivoting  portion of the  routine  had been  used.  Thus,  the  errors  encountered 
with the two-dimensional  calculations do not  seem t o  be due  to  numerical  problems 
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resulting from ill-conditioned matrices.  Increasing the number of mesh  points in order 
to improve correlation was  not  feasible with  available computer resources.  Decreasing 
the number of mesh  points  would  not  have  provided a realistic  representation of the 
physical problem. 
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7.0 THREE-DIMENSIONAL  PROGRAM STUDIES AND 
ANALYSES 

Modifications  to  the  three-dimensional  program as described  in  reference 5 are  
described in  section 7.1. The  results of applying  the  resulting  program  to  the NASA 
transonic  unsteady  pressure  model of low-aspect  ratio  clipped  delta  planform  are 
presented  in  section 7.2. Section  7.3  presents  results  for a moderate-aspect-ratio 
rectangular  wing. 

7.1 THE  THREE-DIMENSIONAL  PROGRAM 

The  pilot  three-dimensional  program as described in  reference 5 was  restricted  to  lifting 
surfaces  with  rectangular  planforms.  This  program  has  been  revised,  and its design  and 
usage  documented  in  reference 19. The  revised  program is valid  for  wings  with 
aft-swept  leading  and  trailing  edges.  The  leading  edge  may  be  curved (of arbitrary 
shape),  but  the  trailing edge must be straight.  This last limitation is due  to  the  method 
of programming  rather  than  being a restriction on the  theory.  In  addition,  the  program 
has been  revised to: 

1. Include  the  capability  for row relaxation as well as the  original  column  relaxation 

2. Make  use of the  anti-symmetry  characteristics of the  unsteady flow about 
symmetric  wings so that only  half  the flow is  actually  calculated 

Row relaxation proved much  faster  than  column  relaxation  for  the  two-dimensional 
problem.  The  same  appears  to be true from the  minimal  number of three-dimensinoal 
examples we have  run.  However,  it  should  also be  noted that  solution  instabilities  have 
again  been  encountered  in  the  mixed flow case,  and  the  results of the following section 
for the  configurations  with  thickness  were  obtained  using  column  relaxation.  It  was 
noted in  reference 5 that, for the  two-dimensional  problem, row relaxation was much 
more efficient  than  column  relaxation  in  terms of reaching a specified  degree of 
convergence in a minimum  number of iterations.  It  was  determined  that  in  using row 
relaxation  for  mixed  flow,  additional  terms  must  be  included  in  the  finite  difference 
equation  for  hyperbolic  points  to  avoid  solution  instabilities.  These  additional  terms 
have  not  proved  enough  to  avoid  instabilities  in  the  three-dimensional row relaxation 
solution,  and it  is  assumed  that  the  two-dimensional  analysis of reference 5 should be 
extended  to  the  three-dimensional  equations. 

A derivation of the  wake  integral  for a straight  trailing edge perpendicular  to  the  wing 
root was  given  in  appendix B of reference 5. A general  form,  valid  for  wings  with 
trailing  edges,  that  may be  described by a single  valued  function of the form 

31 



where  f(y) 30, is derived  in  appendix  B of this  report.  The  resulting  form  again  makes 
use of Gauss-Laguerre  integration  and is directly  parallel  to  the  form  derived  in 
reference 5 for the  trailing  edge of a n  unswept  rectangular  wing. 

The  three-dimensional  program,  which is considered  to  be a pilot  program,  has  been 
provided  to  NASA-Langley and is documented in  reference  19.  The  program  has  been 
modified and  permits  calculations  including  swept  leading  edges  while  using  an 
unswept  rectangular  mesh  point  array. 

7.2 RESULTS  FOR  A  DELTA WING 

This  section  presents  the  results of applying  the  pilot  three-dimensional  program  to a 
wind tunnel model built by NASA-Langley  for testing  in  the  LanFley  Transonic 
Dynamics  Tunnel.  The model has a clipped delta  planform  with a 50.5 swept  leading 
edge  and a circular-arc  profile  with a thickness  ratio of 6%. The model geometry  is 
shown in  figure 11. The model is designed  to  be  oscillated  in  pitch  and  flapping,  and 
every  effort  has  been  made  to  minimize  the  structural  deflections  resulting  from  these 
rigid body  motions.  The  model is  half-span  and  is  mounted on the  side of the  tunnel 
through a splitter  plate  designed  to  remove  the  wall  boundary  layer. 

The  calculations  were  performed at M = 0.9 for the  wing  oscillating  in  pitch  and 
flapping at a reduced  frequency  based on the  root  semichord of 0.06. 

The  steady-state  pressure  distribution  for  the  wing  is  shown  in  figure  12.  It  was 
calculated  using a program developed at NASA-Ames  by  Ballhaus  and  Bailey  (ref.  20) 
and modified by The  Boeing  Company. It does  not  include a shock  point  operator.  The 
ideas of Schmidt  (ref.  21)  were  used  to  set  up  the  mesh  along  the  swept  leading  edge. 
The  calculations  were  made  for a mesh  with 55 points  in  the flow direction,  32  points  in 
the  spanwise  direction  (half-span),  and  36  points  in  the  vertical  direction.  Convergence 
for the  pitch mode and  the  flat  plate  configuration  with ERROR s 10  and  using row 
relaxation  was  obtained  in  about 100 iterations.  Starting  with  this  solution  and  using 
column  relaxation,  about 50 iterations  were  needed  to  obtain  the  solution for the 
circular-arc  airfoil  shape.  With  solutions  calculated  assuming  symmetry  with  respect  to 
the x-y plane  and  using a CDC 6600  computer  with an  FTN  compiler, the  number of 
CPU  seconds  per  iteration was about 7 and  the  number  per  far-field  update  was  about 9. 

-4 

The  jump  in  pressure  coefficient  due  to  harmonic  pitch  and  flapping  is  presented  in 
figures 13 and  14.  In  each  case,  three  different  results  are  presented.  The first result is 
from  using  the NASA subsonic  unsteady  three-dimensional  airloads  program  (refs. 15 
and  16).  This  should  compare  directly  with  the second set of results,  which  are  the  finite 
difference  results  for a flat  plate.  The  third  data  set  is  from  using  the  finite  difference 
program  for  the  wing  with  the  coefficients of the  differential  equation  obtained  from  the 
nonlinear  steady-state  solution  from  the  transonic  small  perturbation  theory. 

Generally,  linear  results  correlated  very  well  with  the  corresponding  finite  difference 
results  for a flat  plate.  This  was  particularly  true  for  the  pitch mode and  only  slightly 
less so for the  flapping mode.  Note that  the  scale  used  for  the  real  part of the  flapping 
mode is significantly  larger  than  the  scale  used  for  the  imaginary  part.  The  failure of 
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the  finite  difference  solution  to  provide a singularity at the  wing  leading  edge at the 
root is attributed  to the relative  sparsity of points  over  the  apex of the wing. In  setting 
up  the  finite difference pattern, it was  decided  to  emphasize  the  points  on  the  aft 
portion of the  wing  and  in  the  wake.  From  practical  considerations,  then,  the  planform 
apex  was  somewhat  slighted  in  terms of points. 

The  finite  difference  solution  with  thickness showed the  usual  peaks  in  the  unsteady 
pressure  in  the  region of the  shocks as calculated  in  the  steady flow. No experimental 
data  are  available at this  time for  comparison  purposes. 

Results  for  the  delta  wing at an  angle of attack  are  presented  in  figure  15.  The  first  set 
of results  was  obtained  using  the  nonlinear  steady-state  finite  difference  program  for an  
angle of attack of  1.5'. The  results  are  presented as jump  in  pressure  coefficient  per 
unit  radian.  The  results  from  the  nonlinear  steady-state  program  were  not  fully 
converged;  however,  estimated  converged  results  were  indicated  in  the  nei hborhood of 
the shock as obtained  using  the  Aitken-Shanks  nonlinear  transformation (6 -process) of 
reference 22. The second set of results  was  from  the  unsteady  program  using a pitch 
mode and a very  small  reduced  frequency of w = 0.00001. Only  the  real  part of the 
resulting  presure  vector is plotted.  The  thickness  effects  in  the  unsteady  program 
resulted  from  the  steady  velocity  potential a t  zero angle of attack from the  nonlinear 
program.  The  computer  resources  required  to  obtain  the  set of results from the  linear 
unsteady  program  were  significantly  less  than  those  required  for  the  results  from  the 
nonlinear  steady  program. 

3 

The  pressure  coefficient  distributions  from  the  two  solutions  exhibited  the  same 
characteristics  with  greater  amplitude  in  the shock  region  for the  linear  unsteady 
solution  for a very  small  frequency  than  for  the  steady  nonlinear  solution.  Both 
solutions  were  obtained  without  using a shock  point  operator. 

7.3 RESULTS  FOR A RECTANGULAR WING 

The  revised  three-dimensional  program was also  used  to  recalculate  the  pressure 
distribution  over an  aspect  ratio 5 rectangular  wing  oscillating  in  harmonic  pitch. A 
Mach number of 0.875 was  used  with a reduced  frequency  based  on the root semichord 
of 0.06. These  results as presented  in  references  5  and 6 were  calculated  using an 
incorrect  scale  factor  on  the  steady-state  velocity  potential  distribution.  The  effect of 
correcting  this  scale  factor  is  to  provide a noticeably  larger  pressure  rise  due  to  the 
presence of the shock.  There  still  remains,  however, a significant  attenuation of this 
rise  in  going  from  the  two-dimensional  to  the  three-dimensional  configuration. 

A mesh of 44 points  in  the flow direction, 32 points  in  the  spanwise  direction for the  full 
span,  and 26 points  in  the  vertical  direction  was  used.  The  finite  difference  region 
extended  about one  chord length  in  front of the  leading edge and  behind  the  trailing 
edge,  about  seven chord lengths  above  and below the  wing  surface,  and  slightly more 
than  a  semispan beyond the  wingtip.  The  rerun  has  permitted a comparison of running 
times  between  the  original  program,  using a KRONOS 2.1 operating  system on the CDC 
6600 using  the RUN  compiler and  the  current  program  using  an FTN  compiler.  The 
average  number of CPU  seconds  per  iteration  is now approximately 2 compared  to  about 
8 before, and  approximately 2 %  CPU  seconds  per  far-field  update  compared to 9 before. 
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For  the  case  shown,  the  converged  solution  (in  this  case  the ERROR of eq. (9) was  to  be 
less than  was of the  order of 180 iterations  with  the  initial  unsteady  velocity 
potential  distribution  set  to zeros. 

Figure  16 shows the  steady-state  pressure  distribution  for a NACA 64A006 profile, 
which  was  obtained  using a program developed by Ballhaus  and  Bailey (ref. 20). The 
jump  in  pressure  coefficient  due  to  harmonic  pitch  about  the  planform  leading  edge is 
shown  in  figure 17, with  three  different  results  presented.  The first results  are  from  the 
NASA subsonic  unsteady  three-dimensional  airloads  program  using  linear  theory  (refs. 
15 and  16).  These  should  compare  directly  with  the second set of results  calculated 
using  the  finite.difference  program  and a flat  plate  airfoil  section.  The  third  data  set  is 
from  using  the  finite  difference  program  with  the  steady  velocity  potential  distribution 
from the  nonlinear  steady-state  solution  for  the  wing  with a NACA 64A006  profile.  In 
addition, a two-dimensional  result  from  finite  difference  theory for the  same  airfoil 
section  is  shown  in  the  planform  root  plane. 

Generally,  the  linear  results  correlate  very  well  with  the  corresponding  finite  difference 
results for a flat  plate.  The  results  including  thickness  display  the  pressure  rise  in  the 
neighborhood of the shock that  has  been  characteristic of corresponding  experimental 
measurements  (for  example,  see  ref. 10). The  three-dimensional  results  show a 
significant  softening of the  pressure  rise  in  comparison  with  the  two-dimensional 
results. Of concern  is  the  apparent  intensifying of the shock effect at   the midpoint of the 
semispan of the  wing.  The  reason  for  this  result, which is  not  expected  physically, is 
currently  attributed  to  the way the  finite difference  operators  are  handled.  The  program 
is  written t o  use  central  differencing for subsonic  points (as determined  from  steady 
flow)  and  backward  differencing for supersonic  points. An abrupt  change  in  the  pattern 
of subsonic  and  supersonic  points  occurs on the chord  adjacent to  the one  with  the 
sharpest shock  effects. 

In  an  attempt  to smooth  out  the  shock  effects  spanwise, a shock  point  operator  in 
conservation form  was introduced  into  the  three-dimensional  program.  The  derivation of 
the  operator  is  given  in  appendix C. The  result of using  the shock point  operator  was  to 
(1) significantly  increase  the effect of the shock on the  unsteady  pressure  distribution 
and (2) smooth  out  the  spanwise  pressure  distribution  in  the  neighborhood of the shock. 
A  comparison of distributions  calculated  with  and  without  the  shock  point  operator  is 
shown in  figure 18. Note the  significant  increase  in  the  magnitude of the  pressure rise 
due to the shock at the  wing  root,  with a much  smaller  increment  in  the  rise at 
midspan. No experimental  data  are  available at this  time  for  comparison  purposes. 
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8.0 SUPERSONIC FREESTREAM 

Of significant  interest  is  the  inclusion of transonic flow effects in  the  calculation of 
oscillating air forces  where  the  freestream flow is  slightly  supersonic. Of particular 
interest to the  current work is whether  or  not  the  relaxation  solutions become unstable 
in  the  same  fashion  when  the  freestream is supersonic as when it is subsonic. 

The  differential  and  finite  difference  equations are the  same for  both  the  subsonic  and 
supersonic  freestream  cases.  The flow characteristics  are  sketched  in  figure 19, which 
shows the  boundary  conditions  that  were  used  in a pilot  two-dimensional  program.  The 
unsteady  velocity  potential at the  upstream  boundary is set to zero. Since  the flow is 
supersonic at the  downstream  boundary  and  backward  differencing is used  in  the 
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Figure 19. -Boundary  Conditions for Problem With  Supersonic Freestream 



supersonic  regions,  boundary  conditions  need  not  be  specified at the  downstream 
boundary.  Porous  wall  boundary  conditions  were  convenient  to  use  on  the  upper  and 
lower boundaries.  In  practice,  however,  these  boundaries  should be set  far  enough  out 80 

that they do not  affect  the flow over  the  wing,  and  thus  the  pressure is independent of 
the porosity  factor. 

As discussed by Traci  et al. (ref. 9), the  flat  plate problem in which the  steady-state 
velocity potential is constant  may  be  solved by a single  downstream  pass  with  the 
relaxation  procedure  since  nowhere  in  the flow is any  point  affected  by  points  in  the 
downstream  columns.  The  problem of mixed flow with  the  pocket of subsonic flow buried 
within  the  supersonic flow is  quite a different  matter.  Traci  et  al.  noted  relaxation 
solution  instabilities  in  the  neighborhood of M = 1.0  and,  for  the  supersonic  case, 
obtained  two-dimensional  solutions at M = 1.10 but  not at M = 1.05.  A  priori,  one  may 
suspect that  the  finite  subsonic  region  will  have  properties  similar  to  the  finite  mesh of 
the  subsonic  freestream  case,  which  results  in  instabilities  in  the  relaxation process. 

In  practice,  numerical  examples  do  not  appear  to  admit  such a simple  explanation. A 
circular-arc  airfoil  was  analyzed at two  Mach numbers,  M = 1.05 and 1.15. A  simple 
pitching  oscillation  was  studied.  Some of our  results  have  the  characteristics of 
converging for a number of iterations  and  then  diverging.  Here  the  maximum  difference 
between (PI for  successive  iterations was used as a measure of convergence. If the 
convergence  criteria  were  met before the  divergence  started,  one would assume  that one 
had  obtained a valid  solution.  Under  these  circumstances,  the  use of overrelaxation 
factors  (ORF)  and  underrelaxation  factors  (URF)  other  than  unity  increased  the 
tendency  for  divergence.  Hence,  the  calculations  were  run  with  ORF = URF = 1.0. The 
net  result  was  that M = 1.15, with a relatively  small  subsonic  region,  the  convergence 
characteristics  were  improved by raising  the  reduced  frequency.  At  M = 1.05  with  the 
attendant  large  subsonic  region  about  the  airfoil  leading  edge,  convergence  was 
improved by decreasing  the  reduced  frequency.  This  latter  behavior  is  what would  be 
expected  from  experience  with the subsonic  freestream  problem. 

These  examples  were  rerun  using  the  shock  point  operator of appendix C. Use of the 
operator  noticeably  improved  the  convergence  characteristics at both Mach numbers  but 
did not  eliminate  the  relaxation  solution  instabilities. 

A  summary of convergence  experience  with the  supersonic  freestream  is  given  in  table 
3. The  table  includes  runs  both  with  and  without  the shock point  operator  and  includes 
a general  description of where  the  maximum ERROR  occurred  for  both  converging  and 
diverging  examples.  Since  these  calculations  have  been  made  with a limited  number of 
variations  in  parameters  such as the location of farfield  boundaries,  the  number  and 
spacing of mesh  points,  and  the  location of mesh  points  with  respect  to  the  sonic  lines 
and  subsonic  regions,  it  is  felt  that  firm  conclusions  are, as yet,  unwarranted. 

There  appear  to  be  stability  problems  with  the  relaxation  process  in  the  supersonic 
freestream  problem as well as with  the  subsonic  problem. We suspect  both  have  the 
same  origins;  that  is,  the  eigen  characteristics of the  problem.  However,  numerical 
examples  with  the  supersonic  freestream  problem do not  give  consistent  convergence 
divergence  behavior at M = 1.05  and  M = 1.15. I t  is assumed that a full  direct  solution 
as described  previously would  provide  solutions, but  this  has  not been  tried. 
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Table 3. -Comparison of Convergence Characteristics o f  Supersonic  Free-stream 
With  and  Without  Shock  Point  Operator (SPO) 

Reduced 
frequency, 
w 

M = 1.05 M = 1.15 

With SPO Without SPO With SPO Without SPO 

0.01 5 Converges * Subsonic area 
4 3.5E-4 

Converges 

region off wing 
t In  front  of subsonic 

0.03 Converges * A f t  sonic  line 
rS 3.4E-4 

Diverges * Front sonic  line 
Diverges 

region region 

Diverges * Peak of subsonic * Peak of subsonic 

0.06 Diverges 
* Af t  sonic  line 

Diverges * Af t  sonic  line 
Converges 

region off wing region on  wing 

Diverges * Aft  of subsonic *In  front  of subsonic 

2r 2.OE-4 

0.1 2 Converges 

*In  front  of subsonic region  on  wing 
35 iterations Aft   of  subsonic 
Diverges after 

rt 1.6E-4 region off wing 

Converges Diverges after 

region on  wing * Front sonic  line 
* Aft   of  subsonic 40  iterations 

0.24 

ORF = URF = 1.0 
4 Maximum  error  after 100 iterations 
* Location  of  maximum  error 
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9.0 PROPERTIES OF THE  RESIDUAL 

It is customary for both  steady  and  unsteady  transonic  finite  difference  solutions  to  use 
ERROR rather  than  the  residual as a criterion  for  relaxation  solution  convergence. 
ERROR is the  maximum  difference  between  successive  potential  distributions  divided 
by the  relaxation  factor as defined in  equation (9). The  residual is the  difference 
between  the  right-hand  side  and  the  system  matrix  times  the  current  approximation 
when  the  set of equations  is  written Aqq=R. This  section  summarizes a brief  study of 
the  characteristics of the  residual  with  respect  to  the  unsteady  problem. 

" 

First,  it  is noted that  numerical  examples, which are  presented  in  appendix  D show 
that a residual of the  same  order of magnitude as ERROR may  be  obtained by scaling 
the  residual  value  with  an  associated  area.  For  the  purposes of this  report,  the 
RESIDUAL at a point  ij  is  defined as the  product of the  value of the difference  equation 
by a term  proportional to the local mesh  area, viz. 

It is shown in  appendix  D  that RESIDUAL may  be  interpreted as the excess  (or  deficit) 
of the  mass flux within  each  mesh  in  the flow field.  Since  for an  exact  solution of the 
difference  equation,  this  should be  zero, it  is  also a measure of how close the  relaxation 
solution  is  to  being  converged. 

It  can  be  shown  that  RESIDUAL  and  ERROR  curves,  when  plotted  on  an 
iteration  history  curve,  should be essentially  parallel  to  each  other. A mathematical 
explanation of this phenomenon is  also  presented  in  Appendix  D  along  with  numerical 
examples  for  illustration  purposes. 

Generally,  it  is  not  convenient  to  use  the  residual (or, for that  matter, RESIDUAL) as a 
convergence  test  since  evaluation  requires a separate  pass  after  all  the  velocity 
potentials  have  been  updated. 
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10.0 AEROELASTIC ANALYSES 

Calculating air forces  for flutter  analyses  can become very  expensive  when  using  the 
more  complex aerodynamic  procedures  such as the method of this  report. This is  due to 
forces  being  functions  not  only of Mach  number (as for steady-state  analyses)  but  also of 
reduced  frequency  and  due  to  the  need  to  calculate  pressures  for a set of modes 
(generalized  coordinates),  which  may  number  from 10 to 20 or  more  for  low-aspect-ratio 
configurations. Also, flutter  analyses  are  often  required  for  small  perturbations  in  mass 
and/or  stiffness  distributions  from  the  basic  configuration  and,  in  general,  this  means 
recalculation of the  generalized air force matrix.  The  question  arises as to how the 
recalculations of the air force matrix  can be  handled  most  efficiently  with  respect  to  the 
procedures of this  report for unsteady  transonic flow. 

It  is first noted that  the basic  differential  equations  are  linear  with  spatial  varying 
coefficients. The  resulting air forces are thus  superposable  and  may  be  directly  used  in 
conventional  flutter  analysis  formulation. 

Next,  the  two  kinds of numerical  solutions  to  the  finite  difference  equations  that  have 
been  discussed are  the  line  relaxation  procedure  and  full  direct  solution.  The  former, 
which permits  the  solution  to be calculated  in  sequences,  is  preferred  because of the 
large  number of finite  difference  points  (and  thus  the  large  number of equations)  even 
for two-dimensional  problems.  Indeed,  it  may  well  represent  the  only  practical  solution 
method  for  three-dimensional  analyses.  However,  line  relaxation  does  have  instability 
problems  for larger  values of AI. It  was concluded in  section 5 that for  combinations of 
Mach number  and  reduced  frequency  where  relaxation  solutions  are  unstable,  the  most 
feasible  method  is  the  full  direct  solution.  In  matrix  form,  both of these  procedures  are 
written as 

It  is  assumed  that  outgoing  wave  boundary  conditions  are  used on the  far-field 
boundaries so that {R] does not  depend on cpl’s. Also, the  matrix sizes have  been 
indicated  above  the  equation.  Here,  m  is  the  total  number of 
interior to  the  outer  boundaries.  The  matrix {R} is a function 
(the mode shape) so that  equation (20) may  be  rewritten  as 

. .  
finite  difference  points 
of surface  deformation 

The  matrix  [T~w(w)]  calculates  the  boundary  conditions  on  the  right-hand  side  from 
the  modal  matrix {f l  . Here, n is the  number of aerodynamic  control  points  on  the 
airfoil  or  wing  and  the  superscript s denotes  the mode shape.  The  size of n is expected  to 
be  on the  order of 40 for the two-dimensional  problem  and  on the  order of 300 for the 
three-dimensional  problem. 

( S ) }  
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With  respect to the  direct  solution, it is easy  to conceive of an  influence  coefficient 
matrix that would be independent of structural  characteristics; that is, a matrix  which 
when  postmultiplied by a modal matrix  and  premultiplied by its transpose would 
provide a set of generalized air forces  directly.  For  example,  equation (21) may be 
rewritten as 

The  pressure is obtained by operating on the cp17s, 

The  transformation  matrix  [Tp]  transforms  the  velocity  potential  to  the  pressure 
distribution,  and  the  generalized air force Qrs is found  from 

where  the  matrix [ T I ]  performs  the  necessary  integration of the  product of the  pressure 
due  to mode s times  the rth mode shape.  Substituting  equation (23) in  equation (24), we 
have 

and  the  matrix  product enclosed by the  parentheses is just  what is desired  and is a 
complex matrix of order  nxn.  This  represents a very  manageable  matrix  in  terms of size 
and  number of operations  to  obtain  Qrs. 

However, the  critical  problem  is  the  size  and  banding  characteristics of the  matrix 
[A(M,o)].  For  example,  for  practical  two-dimensional  problems, m will  be 
approximately 1000 to 2000 and  for  practical  three-dimensional  problems  it  will be 
approximately 25 000 to 50 000. Also, [A(M,o)]  .is  complex,  which  essentially  doubles 
its  storage  requirements.  Here  significant  advantage  can  often be taken of the  special 
case of flow symmetry  with  respect  to  the  plane of the wing.  While this  may  result  in a 
two-dimensional  problem of manageable size, i t  does  not  appear  to do the  same for the 
three-dimensional  problem.  An  important  characteristic of [A(M,w)] is that it is  banded; 
therefore,  both  [A(M,o)]  and  its  LU  decomposition  form  can  be  stored  in  significantly 
less  space  than  the  complete  matrix.  Thus,  in  practice,  the  inverse of [A],  which  would 
be a dense  matrix,  is  not  calculated.  The  unknowns  that  are  found  are  the pi's of 
equation (21) or (22), and  the  solution is found  from the LU  decomposition by back 
substitution. 
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The  authors  are  not  familiar  with  the  capabilities of the  current  generation of STAR 
machines or  plans  for  the  next  generation.  It  may  be  that  the  increased  capability of 
these  machines could solve the  problem as posed. Also, the  capabilities of sparse  matrix 
routines  have  not  been  thoroughly  investigated. It would appear  feasible,  however,  to 
actually  obtain  the  inverse of [A(M,u)]  for  two-dimensional  problems of practical  size 
but  not  for  three-dimensional  problems. 

The  alternative would  be to  calculate  the  transonic  air forces in  terms of a limited  set of 
reference modes. Then as the  mass  and/or  stiffness  distributions of the  basic  structure 
are  changed,  the new natural modes of the modified system would  be found as a 
superposition of the  reference modes. In  the  same  fashion,  the  generalized air forces  for 
the modified system would  be obtained as a superposition of the air forces  for the 
reference modes. These  reference modes  would usually  be  the  natural  modes of the  basic 
configuration. 

The  generalized  forces for the  reference modes (or any  other  set of modes), if the  inverse 
of [A] is  not  available, would  be calculated  from a sequence  starting  with  the  solution 
for { q l }  in  equation (21) using LU decomposition. It  is noted that LU decomposition is 
done once and  the  results  are  stored so that obtaining(cp1)for  new  modes is  relatively 
efficient.  The  column of generalized  forces  is  then  found  from  the  matrix  triple  product 

I-x1 rxn  nxn  nx4n 
(Vs)  = [ f I T  ([TI]  ITPI)( \ 

The{ ( ~ 1 ‘ ~ ) )  is a subset of the  full{ql}matrix from the  solution of equation (21). The 
matrix  product  enclosed  in  the  parentheses  may be calculated once and  stored  for  future 
use.  The  integer r is  equal  to  the  number of reference modes used,  which would  be 
expected to  be  approximately 20 or 30. Generally,  it  appears  that  obtaining  the 91’s for 
additional  reference  modes  will  take  less  time  than  was  required t o  do the LU 
decomposition. 
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11.0 CONCLUSIONS 

This  report  has  further  explored a particular  finite  difference  formulation  for  analyzing 
unsteady  transonic flow over  harmonically  oscillating  wings.  The  preferred  numerical 
solution  process of line  relaxation  has  proved  unstable  for  ranges of Mach  number  (both 
subsonic and  supersonic)  and  reduced  frequency of direct  interest  in  flutter  analyses. 
Although  no  means  were  found  for  extending  the  range  using  relaxation  procedures, a 
direct  solution of the complete  finite  difference  mesh  was  shown  to  produce  solutions at 
subsonic Mach numbers  outside  the  range of solution  convergence for the  relaxation 
process. I t  is surmised that  the  direct  solution could also  be  applied  to flows with a 
supersonic  freestream Mach number as well. 

Because of limited  computer  capacity,  the  direct  solutions  obtained  were  for a coarse 
mesh,  and  accuracy was observed  to  decrease  with  frequency.  The  means for improving 
the  accuracy of the  direct  solution  are  indicated by a study of a similar  one-dimensional 
problem  for  which  exact,  analytic  solutions  were  readily  obtainable  for  comparison  with 
the  solutions  from  the  finite  difference  analysis.  The  accuracy of the  finite difference 
procedure  was  found to be  proportional  to  h A1 so that  the mesh  spacing  must be varied 
inversely to the 312 power of frequency if accuracy  is  to be retained. For the  higher 
values of reduced  frequency at values of Mach number close to 1, this will  mean 
working  with  very  large  sets of finite  difference  points. How the  use of nonuniform 
mesh  spacing  will  affect  this  conclusion  has  not  been  examined. 

2 3  

In  addition to the  general  error  level,  large  excursions  in  error  are  caused by the 
presence of real  eigenvalues  associated  with  the  mesh  region  and  the  far-field  boundary 
conditions.  These  excursions  can  be  supressed  in  the  one-dimensional  examples by 
proper  selection of boundary  conditions that  result  in  the  replacement of the  real 
eigenvalues by complex eigenvalues.  Since  these  boundary  conditions  are  in  the  nature 
of outgoing  waves, it  is  assumed  this  can be  done in  the two- and  three-dimensional 
analyses also. 

The  three-dimensional  program developed in  reference 5 was  extended t o  analyze  wings 
with  swept  leading  and  trailing  edges,  and  solutions  for  both a moderate-aspect-ratio 
rectangular  wing  and a low-aspect-ratio, clipped delta  wing  are  presented.  The  pressure 
distributions  appear  reasonable  although, as yet, no experimental  results  are  available 
for correlation. 

A conservative  shock  point  operator  has  been  derived  for  use  in  two-  and 
three-dimensional  analyses.  In  the  rectangular  wing  analyses,  use of this  operator 
significantly  increases  the  effect of the shock  on the  unsteady  pressure  distributions  and 
smooths  the  spanwise  distribution of pressure.  In  relaxation  calculations  for a 
supersonic  freestream,  use of the shock  point  operator  extends  the  range of convergence 
but  does  not  remove  the  relaxation  instabilities. 

Boeing  Commercial  Airplane  Company 

Seattle,  Washington 98124 
P.O. Box 3707 

November  1977 
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APPENDIX A 

ONE-DIMENSIONAL PROBLEM 

A.l PROBLEM STATEMENT 

To gain  insight  into  the  accuracy  obtainable by using  direct  solution  methods as well as 
the  relaxation  solution  stability  problem, a one-dimensional  version of the flat-plate 
small  perturbation  equation  was  investigated. This equation,  which is obtained  simply 
by dropping  the  plYy  term  from  the  two-dimensional  equation, is 

or,  dividing by K and  using EK = (1 - M )/M 2 2  

where A1 = oM/(1 - M ). The  problem  then  was  the  solution of equation (A-1) for cpl(x) 
on an  interval x = a to  x = b  with  specified  types of boundary  conditions; i.e., a 
two-point  boundary  value  problem. 

2 

The  problem  was  numerically  solved by discretizing  the  derivatives  with  second-order 
approximations on a uniform  mesh, as the two-and  three-dimensional  cases  in  reference 
5 were  solved.  The  numerical  problem  thus becomes  one of solving a linear  system of 
the form A G  = B, where A is a tridiagonal  matrix  and B depends on the  boundary 
conditions.  The  solution was obtained  with  the  tridiagonal  solver  used for each row of 
the  two-dimensional row relaxation  solution. 

A.2  ANALYTICAL  RESULTS 

The  advantage of experimentation on such a simplified  problem  is  that  analytic  results 
are  readily  available for comparison  with  numerical  calculations  to  obtain  accuracy 
information. 

To begin,  we  observe that  the  general  solution of equation (A-1) is given by 

where C1 and' Cz are  independent of x and  are t o  be determined by the  boundary 
conditions. We note that  in  general cpl contains  components of substantially  different 
wavelengths,  in  fact  in  the  ratio (1 + M)/(1 - M) = 19/1 * for M = 0.9. Since 
approximation of the  shorter  wavelength  component  is  less  accurate  for a given  number 
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of mesh  points  than  the  longer  wavelength  component, we  would expect  the  error  to  be 
larger  when C1 is such  that  this component is significant,  regardless of the valu,e of AI. 
This  was  indeed  found. (See fig. 4.) Since C1 and C2 are  determined by the  boundary 
conditions, we turn  next  to  consideration of these.  In  their  most  general  form,  these are 

Since C1 and Cz are  determined  from  the  boundary  conditions,  the choice of the 
constants  in  equation (A-3) will  clearly  affect  the  accuracy of the  solution.  There  is a 
less  obvious  way in which the choice of these  constants  affects  the  accuracy:  certain 
choices will  lead  to  nonuniqueness of the  solution,  which  is  reflected as large  increases 
in  the  error for certain  reduced  frequencies. To be more  precise,  for  certain  choices of 
al ,  p1, “2, and pz, there  are  values of A 1  (eigenvalues) for which  nonzero  solutions 
(eigenfunctions)  to  equation (A-1) with y1 = y2 = 0 in  equation (A-3) will  exist. 
Information  is  easily  obtained as to  the  values of the a and p constants  in  equation 
(A-3) for  which  real  eigenvalues  exist.  Substitution of the  general  solution  equation 
(A-2) into (A-3) with y1 = y2 = 0 yields a 2 by 2 linear  system for C1 and Cz. In  order 
for this homogenous  system  to  have a nontrivial  solution (i.e.,  for eigenfunctions  to 
exist),  it  is  necessary  that  the Coefficient matrix be singular (i.e., have a 0 determinant). 

When the  substitution is made  and  the  determinant  set  equal to 0.  one  obtains, after 
some  simplification,  the  relation: 

Note that if either  the coefficient of the cosine term or the  sine  term  is 0, then  real 
values of A1 exist for which  equation (A-4) will  be  satisfied; for example, 

ra, m = 1,2, ....... m7-r 
(A-5) 

This  will  clearly be the case for Dirichlet (a1 = a2 = 0,  p1 = pz = 1) and  Neumann (a1 
= a2 = 1, p1 = pz = 0)  boundary  conditions,  since  the coefficient of the cosine term  is 
then 0. The  same is true for  boundary  conditions of the  third  kind (al = a2 = 1) when 
P1 = P Z J  

There  are  other  values of the a’s and p’s which  lead  to  real  eigenvalues;  for  example, 
values  such  that  the  coefficients of both the  sine  and cosine terms  are  real or pure 
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imaginary. Of more  interest,  however,  are  values  such  that  equation (A-4) cannot  be 
satisfied  by  real A1 . Such  values  can  easily  be  obtained  using m i x e d  boundary 
conditions.  For  example,  specifying cp1 at x = a and pix + i d 1  - M)cpl at x = b  implies 
that  in  equation (A-3) a1 = 0, p1 = 1, a 2  = 1,  and p2 = iA1(1 - MI. Substituting  these 
values  into  equation (A-4), we find  that  this  equation becomes 

iX 1 (b-a) 
-A le  $ 0  

which cannot be satisfied  for  real A 1  z 0. Thus  these  boundary  conditions do not  permit 
real  eigenvalues.  Similarly  specifying cplx - iAl(1 + M)qq at x = a and 91 at x = b 
implies a1 = 1, /31 = -iAl(l + M), a2 = 0, and & = 1, which  when  substituted  into 
equation (A-4) yields  the  equation 

which  cannot  be  satisfied  for  real A1 + 0. Thus  again  the  boundary  conditions do not 
permit  real  eigenvalues.  The  difference  in  the  behavior of the  error for real  and complex 
eigenvalues is illustrated  in  figure 5. 

Some  idea of the  error  introduced by discretization of the  analytical  problem  may, a t  
least  in  the  case of Dirichlet  boundary  conditions, be gained  from  the  literature.  In  ref. 
18,  Fischer  and  Usmani  have  shown  that  for  the  problem 

$" + A 1 2  $ = 0, XE [a,  b l  

when JI" is replaced by the  usual second-order  finite  difference  approximation on 8 

uniform  grid of spacing h,  the  maximum  absolute  error,  Emax,  satisfied Emax < E l ,  
where 

= 1 ~ 4  n14 N/[ I 2 sin e - I sin (N -t 1 )  01 I 

where 

h =  - b - a  
N +  1 

When hX1 is  small,  we  have  &"X1,  and 

Since + = Dl  sin A x+ D2 cos Alx, we have IQ = DA14 for  some  constant D, so that  El 
behaves  like Eh2A1 / 1 sin Al(b - a) I ,  with  E  some  constant. i 
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Now since  equation (A-1) for cp1 may  be  transformed  into JI" + A12JI  = 0 by  the 
nonsingular  transformation cp1 = J I E ' A ~ , ~ ~  it  is  not unreasonable  to  expect  the error in 
the numerical  solution of the discretized version of the cpl problem,  and this  in  fact  was 
found to be the  case.  (See fig. 6.) 

The results and  conclusions from this analysis are  presented in section 5.1. 
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APPENDIX B 

EVALUATION  OF FAR-FIELD WAKE INTEGRAL 
FOR AN ARBITRARY WING 

We consider  the  evaluation of the field  wake  integral  given  in  equation (B-1) of 
reference 5,  namely, 

where  the  partial  derivative  is  to  be  evaluated  at 

-iX1 [M(xl-x1’)-R] 
~ = e  

and 

As before, the  evaluation  will  be  carried  out  for x1 = 1.0. The  trailing-edge  function  will 
be assumed  to be a single-valued  function of the form 

Xte (Y 1 ’) = 1 + f(y 1‘) 

where f(yl’) 20 for -yt<ytrcyt,  but  is  otherwise  arbitrary. For the  rectangular  wing,  for 
example ,   f (y l ‘ )  = 0 ,  while  for  the  swept  wing  with  straight  trail ing  edge, 
f(yl ’) = a .  1 y l ’  I , where a is  the  tangent of the sweep angle. A more general  example  is 
given  in  figure (B-1). 

Equation (B-l), after taking  e into  the x1 “integral, becomes i w .  1.0 
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Figure B- 1. - Geometry for Wake Integral  Evaluation 
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'4 

Let I, be  the  inner,  xl'-integral 

setting p = xl' - 1 and  inserting  the expression for JI yields 

J- -ihl (Rl+Mp)  
, - l a p  a e I, = dP 

f(Y 1') 
a z l *   R 1  

with 

Taking  the  a/dzl'outside  and  combining  the  exponentials, we obtain 

or since 

A I  wM/( 1 - M2) 

Next,  let 

When 

and as 
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Further 

+ M2 (p2 + Ro2) + 2MR1p + p 

which  becomes, using p2 = 1-M2 

and 

so 

d s = P & ” [ R g Z + p 2 + 2 M R 1 ~ + M  P ?IH 

Now, let u = Y + u1 so that 

a 
-i 1 

00 M ” (v+u 1 ) 
I,. = 7’ c e dv 

I 

The  singularities of the  integrand  are  where 

1+ (v + u1)2  = 0 

(B-10) 

(B-11) 

(B-12) 

(B-13) 

(B-  14) 

(B-15) 

or 
v=-u1 k i 

Now from  equation (B-9) and  the  assumption  that f(y1’) 2 0, it follows that ul>O, so the 
singularities  are  in  the  left  half of the complex plane.  Thus,  applying  Cauchy’s  theorem 
to  the  contour  integral 

(B-16) 
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where the contour is shown in  the following sketch 

Then, c = c1 + c2 + c3 and 

I = I  +I, + I ,  = o  
,c wc1 c2  c3 

and 

For r sufficiently  large,  the  denominator of the  integrand is >r/2. 

(B-17) 

(B-18) 
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Thus, we  have 

(B-19) 

On c3,v = iq  and dv = idq so that 

or letting q = -7 

(B-20) 

(B-21) 

The  next  step  is  to  find  the  partial  derivative  in  equation (B-19). We note  from  equation 
(B-9) that  u1 is a function of Iz, and  therefore of zl' and  thus we must  also  differentiate 
ul. It appears  simplest  to move the u1 dependence  to  the  limits  before  differentiating. 
Letting p = u1 - iq, then  dp = idq, or d p  = "idq,  and  when q = 0, p = ul ;  when q = r, 
p = u1 -ir, so, 

ul-ir -iXIPRO(p/M) 
e 

dP 

Performing  the  differentiation,  the  integral becomes 

or, transforming  back  to q 

(B-22) 
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or 

Substituting  equation (B-23) into  equation (B-22) and taking  the  limit as r _too, we have 

(B-24) 

and 

from which 

or 
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The  final  calculation  required is that  of aOllaz1’. Since  u1  depends  on zl‘, only  through 
&, au,/az1‘ = (dul/dRo)  (aRo/&l’). 

From  equation (B-91, 
M J f W + f ( Y 1 7  

u1 = 
PRO 

from  which 
du 1 M u 1  - =  

dRo P J m  Ro 

“ (B-26) 

where  the  bars  signify  evaluation at z l ’  = 0. That  is, 

and 

M Jfm+ f(Y 1‘) 
ii1 = 

OR, 
The  integral  in  equation (B-27) differs  only  slightly  from  that  given  in  reference 5 and 
may  be  evaluated by the  same  method,  Gauss-Laguerre  integration. 

Thus evaluation of the  far-field  wake  integral  is  reduced  to  using  equation (B-27) in 
equation (B-2) with  the  appropriate  expression  for  the  trailing  edge. 

Specialization of equation (B-27) for  the  straight  swept  trailing  edge is immediate, 
consisting  only of taking  f(yl’) = a1 yl’  I where a is  the  tangent of the  sweep  angle 
measured  back  from  the y1 ’ axis. 

A check is available by  comparison  with the  rectangular  wing  case.  Taking f(y1’) = 0, 
we have 
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so that equation (B-27) becomes 

as was  previously  obtained. 

Acknowledgement.  Calculations  performed by R.W. Call  toward  extending  the 
treatment  in reference 5 to  the  case of the sweptwing  with  straight  trailing  edge  have 
provided useful  insights for the  general  treatment  given  here. 
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APPENDIX C 

DERIVATION OF SHOCK POINT OPERATOR 

When a rapidly  decelerating flow is supersonic  upstream of the  point i, j (ui,s,J<O) and 
the flow becomes subsonic  downstream of the point ui+1/2,~>0), a shock  wave then lies 
close to  the  point i, j. To satisfy  the  appropriate  jump  conditions  across  the  shock,  the 
dserence  operator for the  point i, j must  be  conservative. To obtain  such  an  operator, 
we apply  the  divergence  theorem 

to  the  differential  operator  expressed  in  conservation  form  for  the  control  volume 
consisting of lines  drawn  midway  between  consecutive  columns  and  rows of mesh  points 
as shown in  figure C-1. Here  n  is  the  outward  normal  to  the closed surface. We shall 
consider  only  two-dimensional flow, but  the  generalization  to  three-dimensional flow 
requires  only  the  addition of the  central difference  operator  for plZz at the  point  i,  j,  k. 

0 
i-2, j+l 

0 
i-I,  j+l 

0 
i, j+l 

0 
i+l,  j+l 

T 
J 1 

0 Qy 0 0 0 
i-2, j i -I ,  j 

. .  
1.1 i+l, j 

0 
i-2, j-1 

0 0 
i-1, j-1 i, j-1 

0 
i+l, j-1 

Figure C- 1.-Control Volume for Shock Point Operator 

The  basic  partial  differential  equation,  equation (17) of Ehlers  (ref. l), has  the form 

Hence, the vector F is 
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and  the  approximate  evaluation of the  surface  integral  in  equation (1) yields 
r 1 

'X Py 1 - QXPy-e 1 1J X y 1J + q . .  II Q p*. = 0 
ij+z "-2 

where i+% denotes  the  value of the  quantity at the  point  midway  between xi and  xi+l; 
and  similarly,  for  the  other  half  integer  subscripts.  Dividing  the  equation by PxP, puts 
the  equation  in  difference  form: 

r 1 

Now 

L J 

where DX1 = X i  - xi-2, DX2 = X i + l  - xi-1, and  cli,  dli,  and c2i are  given  in  equations 
(191, (201, and (26) of reference 1. 

(C-4) 
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with Dl = DX1/(DX1 + DX2) and D2 x DXZ/(DX1 + DX2). The  y  derivative becomes 

where aj and  bj  are  given  in  equation (23) of reference 1. 

Finally  the  difference  equation at the shock  point  ij  is  obtained  by  substituting 
equations (C-3), and (C-4), and (C-5) into  equation (C-2). After  some  simplification, we 
obtain 

where 

E2 = di LI. . + iwd i / ~  
"ZJ 

When Dl = 1 and D2 = 0, the difference  equation (C-6) reduces  to  the  hyperbolic 
upwind  difference  equation;  and  when D2 = 1 and Dl = 0, it  reduces  to  the  conventional 
elliptic  central  difference  equation.  For  equally  spaced  points, Dl = D2 = %. With  this 
value  for Dl and D2, equation ((2-6) becomes the shock  point  operator  used  by  Traci, 
Albano, and Farr (ref. 9).  When Dl = D2 = 1, we obtain  the  shock  point  operator as 
used  by  Murman  (ref. 23). The  present  formulation as well as that  of reference 9 yields 
a form of the  differential  equation  consistent  with  that at adjacent  points,  whereas 
Murman's does not. 
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APPENDIX D 

RESIDUAL ANALYSES 

This  appendix  derives  an  interpretation of RESIDUAL as a mass  flux  and a 
mathematical  explanation of the  reason  why  the RESIDUAL and ERROR curves as 
plotted  in a convergence  history are  essentially  parallel. It also  includes  numerical 
examples  illustrating  these  concepts.  The  differential  equation  that  we  solve  for  the 
unsteady flow potential is basically  the  equation  for  the  conservation of mass at a point 
in the flow. This is easily  seen  since it results  from  separating  the  continuity  equation 

P t / P  + v 'VIP1 +vp1 *vp /p  = 0 

into  steady flow and  unsteady flow equations  after V p l p  is eliminated by using 
Bernoulli's  equation  (see  page 35 of Ehlers,  ref. 1). The  differential  equation  for  the 
unsteady complex potential  can  be  expressed  in  the  form (eq. (75) of ref. 1): 

V * F + Q p l = O  

where Q does  not  depend  upon the  unsteady  potential cpl, and  the  factor F= ( F ~ , F z , F ~ ) .  

Consider now a rectangular  parallelepiped of sides Ax, Ay, Az centered  about  the  point 
x,y,z. The  mass  produced  inside  the  region is found by integrating  the  differential 
equation  over  the  volume.  Applying  the  divergence  theorem  to  the first term of equation 
(19) gives  us 

AYAZ [ F l ( x  +  AX/^, y ,  Z)  - F1 ( X  -  AX/^, y, z)] 

+ AYAX [ F3 (X,  y,  z + A z / ~ )  - F3 (X,  y, z - A z / ~ ) ]  

Factoring  out AxAyAz yields 

AXAYAZ [ F 1 ( X  +  AX/^, y, Z) - F 1 (X -  AX/^, y ,   z)]   /AX 1 
+ [ F 3  (X, y, z + A z / ~ )  - F3 (X, y, z - A z / ~ ]  /Az 

+ Q P ~ } =  o 
The  quantity  in  brackets  can  be recognized as the difference  equation  which we are 
solving  for  the  unsteady  potential. The complete  left-hand  side of the  previous  equation, 
which may  not  be  necessarily  zero, is the  residual as used  in  this  report  and is a 
measure of the excess  (or  deficit) of the  mass  flux  within  each  mesh  in  the flow field. 
Since  for an  exact  solution of the difference  equation  this  residual  should  be  zero, it is a 
measure of how close the  relaxation  solution  is  to  being  converged. 
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A  mathematical  explanation of the  reason  why ERROR and RESIDUAL  curves  should 
be essentially  parallel is also  readily  available. Block (i.e., row or column)  successive 
overrelaxation  for  the  solution of A E  = E may be written  in  matrix  notation as 

where  D  consists of the blocks  on the  diagonal of A; L  and  U  consist of the blocks  below 
and above the  diagonal,  respectively;  and r is  the  relaxation  factor.  (The  special  case 
where  A  is  Hermitian  was  discussed  in ref. 5.)  Replacement of U by  A-D-L followed by 
some matrix  algebra  yields  the  equivalent  form 

Here  the last factor on the  right  is  immediately  recoTizable as the vector of (unscaled) 
residuals.  Multiplication of the  residual  vector by  D- effectively  scales  the  residuals by 
an area,  similar  to  the  scaling  used  in  the  program,  since  the  primary  components of 
the  elements of D  have  the  dimensions of (area)-’.  Moving the  first  term on the 
right-hand  side  to  the  left,  dividing by r, and  taking  the  maximum  norm of each  side, 
we have 

Now, the  left-hand  side is just ERROR, as previously  defined,  while  the  right-hand  side 
is just a constant  times  the  maximum  scaled  residual. When this  inequality is viewed as 
providing an  estimate of ERROR in  terms of the  scaled  residual,  it  is  clear  that  these 
two quantities  are  roughly  proportional.  The  essentially  parallel  nature of the ERROR 
and RESIDUAL error  curves on a semi-log  plot in  both  convergent  and  divergent  cases 
is thus  natural  and expected. 

Examples of the  behavior of the  maximum  RESIDUAL  with  iteration  for a 
two-dimensional  configuration are  given  in  figures D-1  through D-7. Two different 
maximum RESIDUALS are shown.  The  first,  called an  “INTERMEDIATE  RESIDUAL” 
is  calculated  after  each  line  relaxation  is  completed.  The INTERMEDIATE  RESIDUAL 
is computed  using  both old and new  values of the velocity  potential  and, if the 
relaxation  factor is set  to  1.0,  it  should  be  zero.  In  our  calculations  it  is of 
approximately l.0-15 for an ORF of 1. I t  is of interest  mainly  because it  can be 
calculated  with  the  coefficients  and velocity potentials  available at the  end of each  line 
relaxation  calculation  and  thus  may  be  obtained  very  efficiently.  The second line  shows 
the  true  maximum RESIDUAL,  which is  calculated  in a separate  pass  after  all  velocity 
potentials  have  been  updated.  It  includes  the  relaxation  factor  and  thus  reflects how 
well the  calculated  velocity  potential as scaled  with  the  relaxation  factor  satisfies  the 
finite  difference  equation. 

In  figure D-1, results  are  presented  for a flat plate  example  (no  mixed flow) solved  with 
row relaxation  using  an  ORF of 1.85.  As  would be expected  from  the  preceding 
discussion,  the  true  RESIDUAL  curve  runs  parallel  to  the ERROR curve,  and  in  this 
particular  case  the  true  RESIDUAL  curve  lies on top of the ERROR curve.  The 
INTERMEDIATE  RESIDUAL curve  lies  above  the  other two. Figure D-2 presents  the 
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Figure 0- 1. -Sample ERROR  and  RESIDUAL Curves  Versus Iteration for Row  Relaxation, 
ORF = 1.85, M = 0.9, w = 0.06, Flat  Plate 
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Figure 0-2.-Sarnple ERROR  and  RESIDUAL Curves  Versus Iteration for Row  Relaxation, 
ORF = 1.7, M = 0.9, w = 0.06, Flat Plate 
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Figure  D-3.-Sample ERROR  and  RESIDUAL Curves  Versus Iteration  for  Row  Relaxation, 
ORF = 1.85, M = 0.9, o = 0.12, Flat Plate 
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Figure 0-4. -Sample ERROR and RESIDUAL Curves  Versus Iteration  for  Row  Relaxation, 
0 RF = 1.85, M = 0.9, o = 0.06, Circular-Arc  Airfoil 
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Figure  D-5-Areas o f  Matching  ERROR Values for a Converged Solution,  Row  Relaxation, 
ORF = 1.85, M = 0.9, u = 0.06 

77 



LE Wing TE 

3.3E-6<  RESIDUAL< 6.6E-6 

1.OE-6 < RESIDUAL < 3.3E-6 

6.6E-7 < RESIDUAL < 1.OE-6 

3.3E-7 < RESIDUAL < 6.6E-7 

RESIDUAL < 3.3E-7 

Figure  D-6.-Areas of Matching  RESIDUAL Values for a Converged Solution,  Row  Relaxation, 
ORF = 1.85, M = 0.9, w = 0.06 
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figure D-7.-,&eas of Matching  ERROR Values for a Converged Solution ROW Relaxation, 
ORF = 1.70, M = 0.9, w = 0.06 
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results  for  the  same  solution  but  with ORF = 1.70. This time  there is a distinct  knee  in 
the  curves at about 50 iterations.  After  the  knee  in  the  curve,  the  true RESIDUAL 
lies between  the INTERMEDIATE  RESIDUAL and ERROR. For this particular  case 
and with  the level of convergence set at a n  ORF of 1.7 would  be better  than  an 
ORF of 1.85. However, if the convergence  criterion  were set lower,  then  the ORF of 1.85 
would be  preferred. 

For  figure D-3 the problem has  been  changed  by  raising  the  frequency so that   the 
solution  diverges.  Again all three  curves move together  but in a far  from  smooth 
manner.  Both  the ERROR and  the  INTERMEDIATE  RESIDUAL  provide a good 
indication of what  is  happening  to  the  solution.  Figure D-4 presents ERROR and  the 
true RESIDUAL for a case  with  thickness,  and  again  the two curves  are  essentially 
parallel  to  each  other. 

Figure D-5  shows the ERROR distribution  for a converged  (maximum  error  less  than 
solution.  The  finite  difference  area below the  wing  is  divided  into  levels of 

ERROR. For  example,  the  most  converged  points  in  the  field  according  to  the ERROR 
criterion are in  the  uniformly  shaded  areas  adjacent t o  the  wing  leading  edge  and  near 
the lower boundary  beneath  the  wing.  Figure D-6 shows  the  same  type of plot  for  the 
RESIDUAL. Here,  the most  converged  portion of solution  according to  the RESIDUAL 
criterion  lies  nearly  uniformly  under  the  wing  extending  from  wing  surface  to lower 
boundary.  Figure  D-7  shows  the ERROR distribution for a different  overrelaxation 
factor  (1.7  rather  than 1.85) with  the  distribution  quite  different  from  that of figure 
D-5. 
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